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We performed a multidisciplinary study characterizing the relationships between hydrodynamic condi-
tions (currents and water masses) and the presence and abundance of the deep-water rose shrimp Aris-
teus antennatus in a submarine canyon (Blanes canyon in the NW Mediterranean Sea). This species is
heavily commercially exploited and is the main target species of a bottom trawl fishery. Seasonal fluctu-
ations in landings are attributed to spatio-temporal movements by this species associated with subma-
rine canyons in the study area. Despite the economic importance of this species and the decreases in
catches in the area in recent years, few studies have provided significant insight into the environmental
conditions driving shrimp distribution. We therefore measured daily A. antennatus catches over the
course of an entire year and analyzed this time series in terms of daily average temperature, salinity,
mean kinetic energy (MKE), and eddy kinetic energy (EKE) values using generalized additive models
and decision trees. A. antennatus was captured between 600 and 900 m in the Blanes canyon, depths that
include Levantine Intermediate Water (LIW) and the underlying Western Mediterranean Deep Water
(WMDW). The greatest catches were associated with relatively salty waters (38.5-38.6), low MKE values
(6 and 9 cm? s—2) and moderate EKE values (10 and 20 cm? s72). Deep-water rose shrimp occurrence
appears to be driven in a non-linear manner by environmental conditions including local temperature.
A. antennatus appears to prefer relatively salty (LIW) waters and low currents (MKE) with moderate vari-
ability (EKE).

Published by Elsevier Ltd.

1. Introduction

The relationship between the environment and the distribution
and abundance of certain marine species is a fundamental issue in
fisheries science, particularly for small pelagic (Cury and Roy,
1989; Lluch-Belda et al. 1989; Beverton, 1990). These fisheries
are associated with changes in surface currents and weather
(Bakun and Agostini, 2001; Agostini and Bakun, 2002; Chavez
et al., 2003; Hare and Able, 2007). However, very few studies have
examined deep-water species dwelling in demersal habitats. Most
studies consider only the morphological or physiological adapta-
tions of species to the deep-sea environment (Gage and Tyler,
1990; Childress, 1995; Herring, 2002) or to long-term variations
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(Billett et al., 2001; Danovaro et al., 2001; Bailey et al., 2006). Re-
cently, Carbonell et al. (1999), Massuti et al. (2008), and Maynou
(2008a,b) hypothesized that the North Atlantic Oscillation (NAO
index) influences the fluctuations observed in demersal resources,
particularly for red shrimp. There is very little evidence linking the
presence of commercial species to specific deep-water hydro-
graphic conditions (deeper than 600 m), and there are very few
studies that consider deep-sea oceanographic processes that may
influence deep-sea fisheries, such as currents, cascading (water
down a slope), re-suspension, or particle flows (Puig et al., 2001;
Moore and Gordon, 2003; Company et al., 2008).

Submarine canyons support high biodiversity and prodigious
biological productivity and many biological processes are altered
or intensified in the proximity of canyons (Hickey, 1995; Gili
et al., 1999). Submarine canyons are a defining feature of the con-
tinental shelf along the continental margins in the northwestern
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Mediterranean Sea (Canals et al., 1982, 1996). The canyons act as
primary channels for sediment transport and particle fluxes (Mon-
aco et al,, 1990; Heussner et al., 1996); are major topographical
features that alter water circulation patterns and dynamics (Dur-
rieu de Madron et al., 1996); and serve as biodiversity refuges (Gili
et al.,, 1998), and as key areas for the recruitment and maintenance
of living resources (Cartes, 1994; Sarda et al., 1994; Stefanescu
et al., 1994; Sarda and Cartes, 1997).

Circulation in the northwestern Mediterranean Sea is generally
cyclonic along the continental slope and is known as the Northern
Current, forced by the introduction of Atlantic Water through the
Strait of Gibraltar (Hopkins, 1985; Millot, 1999; Pinot et al.,
2002; Bas, 2005). Levantine Intermediate Water (LIW), originating
in the Eastern Mediterranean basin, and Western Mediterranean
Deep Water (WMDW), originating in the Ligurian Sea under severe
winter conditions, both flow in the same direction. The surface sig-
nature of the current is intensified by a shelf-slope density front
that separates cooler, fresher waters from the continental shelf
from warmer, saltier waters from the open sea. A typical vertical
current profile yields maximum surface speeds of about 30-
50 cms~!, decreasing linearly with depth down to minimum
velocities of 3-5cms~! approximately 500 m from the bottom.
The mesoscale variability of the Northern Current ranges from 3
to 10days and is usually associated with baroclinic instability
(Millot, 1999). The upper layer of the Northern Current interacts
with local submarine canyons, which alter the route of the current
in the region around the shelf break without altering the offshore
flow (Zaifiiga et al., 2009). Shelf-slope exchanges at the shelf edge
have been observed near the Gulf of Lions submarine canyons,
caused by intense cross-slope fluctuations in the Northern Current
attributed to 2-to-5 day Northern Current meanders (Durrieu de
Madron, 1996). Thus, the mean bottom flow rates in a submarine
canyon may range between 2.4 and 3.7 cm s~!, occasionally reach-
ing 10 cm s~! (Puig et al., 2000).

Heussner et al. (1996) observed that (i) bottom flow rates in the
direction of the canyon axis within the canyons decrease substan-
tially down-canyon, (ii) vertical flow rates increase towards the
bottoms of the canyons, and (iii) mean flow rates in the direction
of the canyon axis measured inside the canyons are on average
twice as high as the values measured on the adjacent open slope.
These observations suggest that canyons act as sumps and as pri-
mary channels for transferring particulate and organic matter to-
wards the distal margin.

The deep-water rose shrimp Aristeus antennatus (Risso, 1816) is
a target species of Mediterranean fisheries, particularly off the
Catalunya region, and are both abundant and economically valu-
able. This resource is regularly exploited by a specialized fleet of
relatively large boats (between 800 and 2200 HP) adapted to catch
in deep-sea fishing grounds at depths between 600 and 900 m
throughout the year. A. atennatus is the dominant crustacean in
the deep-sea benthic ecosystem and plays an important role in
the biological ecosystem (Abell6 et al., 1988; Cartes and Sarda,
1992, 1993; Bianchini and Ragonese, 1994). A number of studies
have focused on the biology and ecology of this species in the
Catalan Sea (Sarda and Demestre, 1987; Cartes and Sarda, 1989;
Demestre and Fortufio, 1993; Sarda and Cartes, 1993; Cartes,
1994; Demestre, 1995; Sarda et al., 1998) and also on its impor-
tance to fisheries (Demestre and Lleonart, 1993; Sarda, 1993;
Carbonell et al., 1999;). A. antennatus is characterized by spatio-
temporal movements related to the geographic structure of sub-
marine canyons (Tobar and Sarda, 1987; Demestre and Martin,
1993). Rose shrimp fisheries are based in areas on the open slope
outside the canyon, areas known locally as “baranas”. Fishing
occurs in these areas from late winter to early summer, and fishing
along the canyon walls from the mid-canyon to the canyon head,
known locally as the Sot-Través fishing ground, occurs mainly from

late summer to mid-winter (Sarda and Cartes, 1994; Sarda and
Cartes, 1997; Tudela et al., 2003).

Ghidalia and Bourgois (1961) proposed an association between
the presence of certain shrimp populations and the temperatures
of specific water masses. According to this group, temperatures be-
tween 14 and 15 °C and salinities of around 38, typical for the con-
tinental shelf and the upper slope, are associated with the presence
of a shallower dwelling shrimp, Parapenaeus longirostris. A slightly
lower temperature (ca. 13.5°C) and slightly higher salinity (ca.
38.5) are associated with the presence of Aristaeomorpha foliacea.
These temperatures and salinity values are characteristic of the
LIW. Finally, they suggested that the species considered here, A.
antennatus, prefers a temperature of 12.8 °C and a salinity level
of 38.4, values typically observed in the WMDW underlying the
LIW.

Previous studies have focused on both the geology and hydro-
graphic processes of the studied region (Puig and Palanques,
1998a,b). Furthermore, Ghidalia and Bourgois (1961) primarily
considered temperature and salinity, which are correlated with
the presence of A. antennatus and A. foliacea, as discussed later in
other works (Cartes et al.,, 2002; Sarda et al., 2004; Maynou,
2008a,b; Company et al., 2008;). Other environmental aspects re-
lated to population movements and the influence of biotic and abi-
otic factors, including food availability, have also been considered
(Cartes and Maynou, 1998; Cartes and Carrasén, 2004; Cartes
et al., 2008). Finally, the relationship between deep-sea resources
and nepheliod layers as a source of nutrients on western Mediter-
ranean middle-slopes has been described by Puig and Palanques
(1998b); and Puig et al. (2001).

The objective of this study was to lay a foundation for under-
standing a major fishery resource in the western Mediterranean
Sea, the deep-water rose shrimp (A. antennatus, Risso, 1816), in
the framework of the environmental factors arising from the struc-
ture of a submarine canyon and the related deep-water dynamics.

2. Material and methods
2.1. Sampling

The study area was the Blanes submarine canyon and the adja-
cent areas along the continental slope in the northwestern Medi-
terranean Sea (Fig. 1). The head of the canyon is embedded in
the continental shelf 60 m deep at less than 4 km offshore (Diaz
and Maldonado, 1990). It then broadens while increasing in depth,
with the lower course reaching down to 2000 m with a breadth of
20 km (Canals et al., 1982). Hydrological conditions and fisheries
yields from the fishing grounds around this submarine canyon
were monitored concurrently over the course of one full yearly
cycle (March 2003-May 2004). Three instrument lines carrying
current meters and Technicap PPS3 automatic sediment traps were
moored throughout the region (Table 1, Fig. 1). The moored instru-
ments made it possible to study current, physical characteristics of
the water masses, and biogeochemical particle fluxes simulta-
neously at various depths at each station over an entire annual
cycle (see further methodological details in Zafiiga et al. (2009).
Shrimp catch data sources consisted of: (i) statistics compiled by
the official fishermen’s association of total daily sales of the Blanes
harbour and (ii) the logbooks of fishing vessels targeting the
shrimp fisheries, maintained by the skippers. These logbooks cor-
respond to 8 boats of the total 13 boats that caught 80% of the total
shrimp annual catch between January 2002 and July 2004. The
catch statistics consisted of records of daily deep-water rose
shrimp landings based on bills of sale on wharf at Blanes harbour,
and included all the fishing grounds around the canyon. The log-
books specified daily landings by vessel (kg), fishing ground, depth
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Fig. 1. Overview of the sampling sites identifying the fishing grounds. Moorings are indicated by vertical white lines.

Table 1

Geographical locations of the mooring sites with respect to the fishing grounds.
Station Latitude Longitude Depth (m) Fishing ground

1 41°50556N 02°90750E 600 Sot-Través

3 41°36250N 02°80530E 900 Westernside canyon
4 41°32806N 02°95472E 900 Barana (easternside)

and trawling time. Based on these data, we calculated the seasonal
catch per unit of effort (kg h™!) for each fishing ground. Once trans-
ferred to a database, all data were analyzed using a GIS specially
implemented for that purpose. Table 2 summarizes the basic catch
data recorded.

Shrimp abundance was related to the environmental parame-
ters using the mooring closest to the fishing ground and towing
depth. Accordingly, mooring 1 was associated with the Sot-Través
grounds, mooring 4 was associated with the Barana grounds, and
mooring 3 was associated with the Westernside canyon grounds

(Fig. 1). Similarly, the data from each mooring was associated with
the total catches based on the fishermen’s association catch data,
though the Generalized Additive Model (GAM) selected mooring
1 as the most representative (explaining most variability) for the
total catches (see Section 3). Two other instruments, moorings 2
and 5, were deployed in the framework of the RECS project (see
Zuiiga et al., 2009; for further methodological details). However,
these two lines were not used in our study due to their distance
from the A. antennatus fishing grounds.

2.2. Data processing

2.2.1. Environmental data

Daily averages were calculated to compare the temperature
and salinity time series with shrimp occurrence. The daily aver-
age was used to provide a representative T and S value for each
day. Current kinetic energy may also explain the sensitivity of
the shrimps to environmental conditions (i.e., current intensity).

Table 2

Basic statistics (mean, standard deviation (SD), and number (n) of observations) for seasonal catches of deep-water rose shrimp in the whole canyon and by fishing ground.

Catch location Spring 2003 Summer 2003 Autumn 2003 Winter 2004 Spring 2004 Total no.
Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n

Whole canyon (kg d") 183 76 86 228 88 94 89 44 90 140 54 89 126 52 50 409

Sot-Través (kgh™') 9 3 34 10 4 94 8 2 90 9 2 80 2 0 8 306

Barana (kg h™!) 13 5 86 8 3 77 6 3 49 9 2 71 12 5 50 333

Westernside canyon (kg h™") 5 2 19 10 3 9 28
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However, instantaneous response of the rose shrimps to the cur-
rents measured at the time of the present study is unlikely.
Thus, it was deemed preferable to use a variable in the form
of an integral describing the energy conditions over a given time
period. We used the mean kinetic energy (MKE), defined as the
mean kinetic energy in the 30-day period preceding the shrimp
catches. The complementary variable that naturally arises is the
eddy kinetic energy, or EKE (cm?s~2). The EKE was defined as
the mean of the variations in Kinetic Energy with respect to
the MKE. Where the MKE describes the typical energy conditions
during a given period, the EKE is the energy variability in that
period. A 30-day window was the most appropriate timeframe
for capturing seasonal intensifications in the Northern Current
within the MKE and for identifying the individual contribution
of mesoscale processes (Millot, 1999).

2.2.2. Biological data

Daily shrimp catches in the canyon as a whole and hourly
catches in the main fishing grounds (Sot-Través, Barana, and West-
ernside canyon) were used in the statistical model. Three-day mov-
ing average filtering was used to reduce noise. A Gaussian
distribution of catches in the canyon as a whole and in the Sot-
Través and Barana grounds and a binomial distribution (pres-
ence-absence) within the Westernside canyon were assumed.
Square-root transformation was applied to the catches for the can-
yon as a whole and the catches from the Barana in order to normal-
ize the data.

2.3. Fitting generalized additive models (GAMs)

GAMs (Hastie and Tibshirani, 1990) were used to assess the nat-
ure of the relationships between the environmental and biological
time series variables (Tobias et al., 2003), as they provide better
data fits and less autocorrelation than other commonly used statis-
tical models such as generalized linear models (Daskalov, 1999).
Unlike linear models, which have a single coefficient for each
model variable, additive models use an unspecified (non-parametric)

Table 3

function estimated for each predictor to achieve the best predic-
tions of the dependent variable. The GAMs used employ the form
g(i) =fi(y1i) + f>(¥2i), where g is a smoothing link function, i.e.,
the combination of values for the predictor of the response variable
Wi = E(y;); f1 and f; are smooth functions, and y;; and y-, are predic-
tor variables.

The Multiple Smoothing Parameter Estimation by Generalized
Cross Validation (mgcv) package (Wood, 2000) implemented in R
software (R Development Core Team, 2007) was used to fit the
GAM models. Penalized regression splines, i.e., functions designed
to be optimal given the number of basis functions in the model,
were used to represent the smooth functions. The smooth terms
are functions of any number of covariates, e.g., s(salinity)+
s(potential temperature) + s(MKE) + s(EKE). The problem of smooth-
ing parameter estimation is solved by the package using the
Generalized Cross Validation (GCV) criterion or Unbiased Risk Esti-
mator (UBRE), which are approximations to the Akaike Information
Criteria (AIC), n - d/(n — df)?, where n is the number of data points,
d is the deviance, and df is the degree of freedom. Smoothing
parameters were chosen to minimize the GCV score for the model.
To suppress overfitting without overly degrading GCV or UBRE
performance, an inflation factor (gamma = 1.4) was used for the
model’s degrees of freedom in the model’s GCV and UBRE scores,
thereby increasing the penalty for each degree of freedom in the
model (Kim and Gu, 2004).

Because the number of combinations of predictors was too
great to test individually, a custom stepwise selection procedure
for obtaining the final models was used based on the following cri-
teria: (a) parameter significance (p < 0.05); (b) regression deviance
(the higher the better); (c) gradients at convergence (the smaller
the better); (d) Hessian, which, if not positive definite, meant that
some of the covariates could be highly co-linear or be subject to
very high variance, and (e) residual plots (approaching normal
distributions).

Model significance and deviance explained by individual pre-
dictors (e.g., potential temperature; Table 3) were compared to
the significance and deviance of models with combined predictors

Generalized additive model fits explaining shrimp catches for the entire canyon and for each fishing ground. Potential temperature, salinity, MKE, and EKE are individual
covariates. The intercept probability p-values [Pr (>|t])] and the smooth terms are highly significant (p < 2.0E-03). 1-8: mooring 1, 9-12: mooring 4, and 13-16: mooring 3.

Model no. Response variable Intercept Individual smooth terms Deviance explained (%) N Score
Term edf

1 Whole canyon 12.31 s(ptem) 5.16 9.34 318 GCV=71

2 Whole canyon 12.31 s(sal) 8.20 26.9 318 GCV=59

3 Whole canyon 12.44 s(MKE) 7.27 26.6 259 GCV=53

4 Whole canyon 12.44 S(EKE) 6.91 42.2 259 GCV=42

5 Sot-Través 9.12 s(ptem) 3.79 9.84 210 GCV =6.6

6 Sot-Través 6.12 s(sal) 3.34 35.7 210 GCV=4.7

7 Sot-Través 8.98 s(MKE) 1.00 3.24 178 GCV =6.6

8 Sot-Través 8.98 s(EKE) 2.61 19.9 178 GCV=5.6

9 Barana 3.29 s(ptem) 2.34 344 149 GCV=0.29
10 Barana 3.29 s(sal) 2.77 36.7 149 GCV=0.28
11 Barana 3.10 s(MKE) 6.76 31.2 265 GCV=0.28
12 Barana 3.10 s(EKE) 3.67 8.59 265 GCV =0.36
13 Westernside canyon -3.61 s(ptem) 2.62 19.1 407 UBRE = —0.57
14 Westernside canyon -4.13 s(sal) 2.57 19.0 407 UBRE = —0.57
15 Westernside canyon -3.71 s(MKE) 1.00 11.7 260 UBRE = —0.63
16 Westernside canyon -116.28 S(EKE)" 3.82 41.0 260 UBRE = —-0.71

Models 1-12 assumed the response variable to be a Gaussian variable and used an identity link function.
Models 13-16 assumed the response variable to be a binomial variable and used a logit link function.

edf: Array of estimated degrees of freedom for each parameter.

GCV: Generalized Cross Validation score at the edf for the final set of relative smoothing parameters.
UBRE: Unbiased Risk Estimator used at the edf for the final set of relative smoothing parameters.

" Non-significant smooth terms (p > 0.05).
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(e.g., potential temperature, salinity, MKE, EKE). The best combina-
tion represented the greatest amount of deviance while maintain-
ing all terms in the equation below a significant level (p < 0.05) of
deviance reduction.

The GAM results were compared with the results obtained using
two types of decision trees: regression trees and classification trees.
The former handled classification with a continuous output variable,
while the latter dealt with presence-absence and discrete numbers.
Regression trees were applied to the shrimp catches (catches from
the all canyon, Sot-Través and Barana fishing grounds) and classifica-
tion trees were applied to the presence-absence data (catches from
the Westernside canyon fishing grounds). Decision trees (Ripley,
1996) were used to detect high-order interaction effects in complex
ecological data sets (De’ath and Fabricius, 2000). A tree is con-
structed by binary recursive partitioning using the response in the
specified GAM formula and choosing splits from predictors. The
variables are divided into X < a and X > a. The split that maximizes
the reduction in the deviance is chose, the data set split, and the pro-
cess repeated. Splitting continues until the terminal nodes are too

134 Spring |  Summer |

Autumn

small or too few to be split (Ripley, 1996). The relevance of a predic-
tor is determined by the deviance criterion (as in GAMs). After
abstraction into binary partition, the predictor with the smallest
deviance is considered the most relevant. The regression and classi-
fication trees were pruned in order to simplify the structure and to
avoid the over fitting to which complicated models are prone. The
trees thus obtained have the advantages of higher accuracy and sim-
plified structure. In this study, the decision trees were fitted using
the regression partitioning and regression tree mvpart package
implemented for R software (Ripley, 1996).

3. Results

3.1. Relationships between individual environmental predictors and
shrimp catches

Salinity explained the greatest variability (up to 37%) for the
shrimp catches (see Table 3). Temperature, salinity, MKE, and
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Fig. 2. Time series of hydrographic data from mooring M1 used to assess the catches from Sot-Través (dashed line) and from total landings (continuous line). Dashed
horizontal lines represent mean catches. Note the correspondence between high EKE and low shrimp catches (shaded areas) found by the GAMs (see Fig. 3).
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EKE were significant in most of the single environmental predictor
models (Table 3). The models fit to the catches from the Western-
side canyon grounds were significant in both temperature and
salinity and showed relatively low model deviance values (19%)
(Table 3).
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Fig. 3. Relationships between total shrimp harbour landings (Whole canyon landings, kg d~!) and potential temperature (ptem1, °C), salinity (sal1), mean kinetic energy
(MKE1, cm? s—2), and eddy kinetic energy (EKE1, cm? s—2) at mooring 1. (A) Fitted GAM explaining 55% of the total variability. (B) Regression tree explaining 51% of the total

variability.
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GAM. Environmental data from mooring 1 best explain the total
catches for the whole canyon. It should be noted that Sot-Través
and total catches displayed similar patterns and relatively high
correlation (Fig. 2; r=0.58, p <0.01).
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Significant non-linear relationships were found between the
shrimp catches and temperature, salinity, MKE, and EKE (Figs. 3A,
4A, 5A, 6A) in the GAMs using environmental data from each moor-
ing and its nearest fishing ground. Combining these variables
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increased the explained model variability to 55%, 75%, and 88% for
catches in the canyon as a whole and in the Sot-Través and Barana
fishing grounds, respectively (Table 4), compared to the deviance
explained by the single predictor models (Table 3). Maximum
shrimp catches were associated with specific ranges of tempera-

ture, salinity, MKE, and EKE (Table 5). Temperatures between
13.13 and 13.21 °C in the Sot-Través and Westernside canyon fishing
grounds occurred in conjunction with the highest catches in the
canyon (Figs. 3A, 5A, 6A). Salinities between 38.15 and 38.65 were
significantly correlated with the highest shrimp catches in the
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Fig. 5. Relationship between the catches (kg h~") at the Barana fishing ground and the potential temperature (ptem4, °C), salinity (sal4), mean kinetic energy (MKE4, cm? s~2),
and eddy kinetic energy (EKE4, cm? s~2) at mooring M4. (A) Fitted GAM explaining 87% of the total variability. (B) Regression tree explaining 50% of the total variability.
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Fig. 6. Relationship between Westernside canyon catches (kg h™") and potential temperature (ptem3, °C) and salinity (sal3), at mooring M3. (A) Fitted GAM explaining 34% of

the total variability. (B) Classification tree correctly classifying 94% based on presence.

canyon (Fig. 3A). Maximum shrimp catches in the Sot-Través,
Barana, and Westernside canyon grounds took place at salinities of
approximately 38.52, greater than 38.60, and approximately
38.56, respectively (Figs. 4A and 5A).

In the canyon and in the Sot-Través, catches decreased with
increasing current intensity for MKEs between 0.1 and 9 cm? s 2

Table 4

(Figs. 3A, 4A). In the Barana catches also decreased with increasing
MKE up to about 6 cm?s2, but remained stable afterward for
MKEs between 6 and 14 cm? s~ (Table 5). Whole canyon and
Sot-Través catches were made at EKEs between 10 and 17 cm? s 2
(Figs. 3A, 4A). In the Barana grounds, which was associated with
mooring 4, the EKE values recorded were within a smaller range

Final Generalized Additive Models chosen to explain shrimp catches in the canyon as a whole and in the fishing grounds within the canyon. Potential temperature, salinity, MKE,
and EKE were combined (additive) covariates. The intercept probability p-values [Pr (>|t])] and the smooth terms were highly significant (p < 2.0E-03).

Model no. Response variable Intercept Combined smooth terms Deviance explained (%) N Score
Term edf

1 Shrimp catches in the whole canyon 12.44 s(ptem1) 5.37 54.5 259 GCV=3.7
s(sall) 3.94
s(MKE1) 3.84
s(EKE1) 4.19

2 Sot-Través 8.98 s(ptem1) 5.05 74.8 178 GCV=23
s(sall) 6.82
s(MKE1) 4.06
s(EKE1) 3.08

3 Barana 3.33 s(sal4) 7.79 86.9 129 GCV = 0.098
s(MKE4) 7.46
S(EKE4) 7.46

4 Westernside canyon —4.55 s(ptem3) 2.49 335 407 UBRE = —-0.625
s(sal3) 2.52

Models 1-3 assumed the response variable to be a Gaussian variable and used an identity link function.
Model 4 assumed the response variable to be a binomial variable and used a logit link function.

edf: array of estimated degrees of freedom for each parameter.

GCV: generalized cross validation score at the edf for the final set of relative smoothing parameters.
UBRE: Unbiased Risk Estimator used at the edf for the final set of relative smoothing parameters.
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Table 5
Optimal environmental values for the highest mean catches of deep-water rose shrimp according to the GAMs and the decision tree models.
Fishing ground Model Temperature Salinity MKE EKE No. obs.
Whole canyon GAM 13.13-13.18 >38.60 <2.0 10-20 -
Regression tree NA >38.40 <6.2 9-17 51
Min-max values 13.03-13.35 38.15-38.65 0.1-9.0 4-26
Sot-Través GAM 13.14-13.21 38.45-38.60 <1.0 15-18 -
Regression tree <13.2 38.40-38.50 <6.5 NA 55
>13.2 38.30-38.60 NA >5.8 9
Min-max values 13.03-13.35 38.15-38.65 0.1-9.0 4-26
Barana GAM NS >38.6 4-6 4-7.5 -
Regression tree NS >38.6 7-11 >6.4 89
NS >38.6 >11 NA 27
Min-max values 13.05-13.20 38.30-38.65 4-14 1-9
Westernside canyon GAM 13.19-13.21 38.54-38.57 NS NS -
Classification tree 13.20-13.23 38.54-38.56 NS NS 15
Min-max values 13.05-13.34 38.45-38.63 NS NS

NA = relatively high catch values not linked to specific values of this variable.
Significance level: 0.01.
Values of the environmental variables linked to the highest catch values.

(.1-9 cm? s2) than at mooring 1, which was associated with the
Sot-Través grounds, and there was a broader range of MKE values
(0.1-14 cm? s72; Table 5, Fig. 6A). Maximum Barana catches were
associated with EKEs between 4 and 7 cm? s~2.

3.3. Decision trees for the shrimp catches using the combined
predictors

Analyzing the GAMs, the tree revealed associations between
specific environmental variables and maximum catch (Figs. 3B,
4B, 5B, 6B). The trees indicated that the total catches in the canyon
were mainly driven by current variability (EKE) and intensity
(MKE; Fig. 3B). The highest mean (root squared) catches of 12.7
and 16.5 kg d~! were associated with EKE values between 9 and
17 cm? 572 at salinities higher than 38.4 and MKEs lower than
6.2 cm? s2. Relatively high Sot-Través catches (11.8 kg h~!) were
linked to temperatures below 13.2 °C at salinities between 38.4
and 38.5 and MKEs higher than 6.5 cm? s~ (Fig. 4B). Another set
of relatively high mean catches (11.6 kg h~!) was linked to temper-
atures higher than 13.2 °C, salinities between 38.3 and 38.5 and
EKEs between 5.8 and 6.9 cm? s ™2,

MKE was the most relevant environmental variable in the Barana
grounds in the lower canyon (Fig. 5B). The mean (root squared)
catch of 3.4kgh™' was associated with salinities greater than
38.6 and MKEs greater than 7 cm?s 2. Another set of relatively
high catch values (3.0kgh™!) was linked to MKEs lower than
4.5 cm? s~ independent of salinity. Temperature was not included
in this analysis, as it was found to not be significant in the GAM
model. On the Westernside canyon grounds where very few daily
catches were sampled, the decision tree analysis indicated that
catches were associated with temperatures of approximately
13.2 °C and salinities of approximately 38.6 (Fig. 6B).

4. Discussion

Aristeus antennatus populations have been associated with tem-
peratures of 12.8 °C in the so-called northern upperlying and
underlying waters at a depth of approximately 600 m with various
salinity conditions (Ghidalia and Bourgois, 1961). While the above-
mentioned temperature is considered optimal, researchers have
reported this species to be present at temperatures of up to
13.5 °C, though at lower frequencies of occurrence. Previous stud-
ies have shown that other aspects of the behavior of this species
could be related to feeding habits. Consequently, different behav-
ioral patterns according to sex, age, physical condition during the

course of the spawning cycle, and the photoperiod have been pos-
tulated. Behavioral factors of this type relating to age and the
reproductive cycle have recently been identified (Sarda et al.,
1994; Sarda and Cartes, 1997; Sarda et al., 2003, 2004).

In the Ionian Sea, rose shrimp have been reported at different
depths, but the highest abundances are found at 600-800 m depths
bothin the Western basin (at 13.3 and 13.7 °C) and in the Eastern ba-
sin (at up 13.9 °C) (Politou et al., 2004). However, the hypothetical
distribution range of this species could extend to a depth of
2800 m (Sardaetal.,2004).In the Catalan Sea and the BalearicIslands
rose shrimp are abundant between 12.8 and 13.9 °C. Nevertheless,
peak densities occur at around 12.8 °C at depths between 600 and
800 m, as previously reported by Ghidalia and Bourgois (1961). Thus,
the distribution of A. antennatus may reasonably encompass broader
temperature/salinity ranges, with narrower ranges associated with
optimal conditions, where the rose shrimp density and occurrence
are higher. Nevertheless, there is no obvious, direct association be-
tween high densities of rose shrimp and deep-water masses (LIW/
WMDW), since this species can be found from 80-to-600 m off
Algeria and Tunisia at temperatures ranging from 12.8 to 14 °C
(Yahiaoui, 1994). Populations are also found at shallow depths be-
tween 100 and 150 m in the Ionian Sea canyons of southern Italy
(Relini and Relini-Orsi, 1987; Matarrese et al., 1995; D’Onghia
et al, 1996). This species also occurs in the Atlantic Ocean off
Portugal at lower temperatures between 11 and 12 °C and relatively
high salinities between 36 and 36.9 (Ribeiro-Cascalho, 1988). Addi-
tionally, the distribution of the species reaches the Indian Ocean
coast of Africa at depths between 200 and 1400 m (Freitas, 1985),
suggesting thatits association with a given water mass, as postulated
by Ghidalia and Bourgois (1961), is not based on temperature alone.

In the Eastern Mediterranean, decreasing salinity has been ob-
served at depths between 500 and 1400 m in the last decade as a
consequence of changes in the thermohaline circulation (Klein
et al.,, 1999; Manca et al., 2002). Alteration of the thermohaline cir-
culation in the Blanes canyon as a result of persistent winter over-
heating of surface waters could initiate changes in the currents in
the intermediate water layer located between the LIW and the
WMDW, where the deep-water rose shrimp is dominant. A recent
hypothesis links the shrimp or demersal fish fluctuation with the
NAO index (Massuti et al., 2008; Maynou, 2008b). However, Com-
pany et al. (2008) and our current results indicate that the local
hydrography, linked to physical processes and geomorphology of
the fishing grounds around the canyons, are directly responsible
for these fluctuations.

Our results indicate a significant relationship between deep-
water rose shrimp, salinity, and the energy conditions of the
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water. Indeed, the best hydrodynamic conditions generating a
deep-water habitat conducive to deep-water rose shrimp abun-
dance appear to be a combination of relatively cold temperatures
(13.1-13.2 °C) and high salinity (>38.5). Concurrently, these con-
ditions appear to be important as higher shrimp density areas are
associated with moderate EKE values. The relatively high mean
shrimp catch under specific environmental conditions suggests
that optimal environmental conditions for A. antennatus in the
Blanes canyon are relatively saltier (LIW) waters, low flow inten-
sities (MKE) and moderate variability (EKE). Under these condi-
tions the existing turbulence and sediment re-suspension
contribute to the dispersal of particulate matter above the sedi-
ment (Gardner et al., 2000; Accornero et al., 2003). This increases
the availability of organic matter, allowing shrimp to forage more
effectively (Zafiiga et al., 2009). In spatio-temporal terms, these
conditions occur most often in the northern part of the canyon
(the Barana grounds) during the spring months, coinciding with
the largest spawning aggregations of shrimp. These oceano-
graphic conditions explain 88% of the variability between catches.
These optimum conditions occur in the fishing grounds yielding
the highest catches: Sot-Través grounds (northern margin of the
canyon) in winter and Barana in spring. Finally, the current en-
ergy seems to be a more limiting factor than the T-S relationship,
as evidenced by the percentage variability explained by the dif-
ferent variables considered in the GAMs.

The low or non-existent catches observed in the Westernside can-
yon grounds (southern margin of the Blanes canyon) result from the
current flow features and the low deep-sea productivity in this area.
Current speed and direction in the Blanes canyon are linked to those
of the incoming current (Northern Current) and the geomorphology
of the canyon itself: the Northern Current flows over the eastern side
and encounters the western side, giving rise to persistent, unidirec-
tional flow against the southern side (Flexas et al., 2008). As de-
scribed by Zuafiiga et al. (2009) the sandier bottoms in this area
result in impoverishment of the substratum, with less POM (Partic-
ulate Organic Matter) and hence less abundant meiobenthos. The
decrease in food availability in the form of POM on the bottom is
associated with relatively more energetic waters with a high level
of advective variability resulting in increased turbulence (Gardner
etal.,2000; Accornero et al.,2003). In turn, less energetic waters give
rise to more stable areas, less dynamic in terms of current flow and
thus supporting more available organic matter, giving rise to a more
suitable habitat for the shrimp.

Furthermore, the physiological conditions of berried adult fe-
males that result in high densities of the rose shrimp in the Barana
fishing grounds could be linked to readily available food on the
substrate. Cartes (1994), Cartes and Maynou (1998) and Cartes
et al. (2008) showed that mature adult females of A. antennatus re-
quire food of suprabenthic prey of higher energy content during
late winter and spring. For this reason we propose that further re-
search should examine the protein, lipid, and carbohydrate content
of deep-water rose shrimp for the different fishing grounds at dif-
ferent times of year.

We were unable to establish a conclusive relationship between
variable environmental fluctuations and catch size. The data-min-
ing techniques (GAMs and decision trees) allowed us to conclude
that catches are non-linearly driven by environmental conditions.
At the constant prevailing temperatures, the significant optimal
environmental conditions for the highest mean catch for A. antenn-
atus are relatively salty waters (LIW) with low current flow rates
(MKE) and moderate variability (EKE).
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